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Another interesting reference should be a fin of infinite TIfE EFFICIENCY OF THE FIN 

In what follows, we shall restrict ourselves to the case 
where there is no heat loss at the tip of the fin; the direction 
of fluid flow needs not to be indicated anymore. 

The classical concept of efficiency introduced by Harper 
and Brown [l] can now be introduced: this “constitution 
efficiency” elr is the ratio of the heat flux dissipated by the 
fin to the one which would be transferred if the heat con- 
ductivity of the fin had become infinite. If k -+ co, then 
Bi-+O,R+l,andwehave: 
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When, furthermore, the heat capacity rate becomes infinite 
(u* -to), so as it is supposed in most cases, we find the 
classical expression: 

lim Pc-ca&h = 

tanh H &Bi) 

HVf(2Bi) . 

But we can find other relevant criteria ofperfectness, which 
may characterize the property of efficiency of a fin. Par- 
ticularly, the parameter E* that we have emphasized here 
above appears to be a “global efficiency” of the fin, since 
the fin of reference should have both infinite thermal 
conductivity and height or extension. 

extension but with- its real thermal conductivity: the 
“extension efficiency” defined in this scope is of interest for 
the designer [2]. 

With finite fluid flow, the “extension efficiency” E,, is 
given by : 

l+R 
&h = 

R ’ 
1+- 

tanh F 

while, when fluid flow becomes infinite, the following and 
very simple expression is found: 

hmpc_m~h = tanh ffJ(2Bi). 

CONCLUSIONS 

We have solved the most general problem of heat transfer 
from fins with heat losses at their tips and finite fluid flow 
between them. This was done in the scope of the concept 
of effectiveness of a heat-transfer cell. From the results first 
obtained, we have deduced general expressions for several 
parameters of etIiciency of a fin. 
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NOMENCLA~RE 

C,, f),, constant coefficients; 
El(x),&(x), residual terms; 

function defined by (13); 
Nusselt number; 
Peclet number; 
Prandtl number; 
Reynolds number; 
temperature; 

F~(Y)> 
Nu, 
Pe, 
Pr. 
& 
T, 
u, 
u, v, 
x, Y, 

mean velocity; 
velocity components in x, y directions; 
coordinates parallel to and normal to flow 
direction; 

5.. reduced coordinate of x, (9); 
&, /% eigenvahtes, (18), (27); 
cb, confluent hypergeometric function. 
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THE STEADY, laminar, incompressible flow in the entrance 
region of heated, porous conduits is investigated by the 
linearized method, which is known to yield good results for 
momentum transfer in tubes of imnermeable wall but is onlv 
fairly good for momentum transfer and failed for heat 
transfer in porous tubes [l]. It is shown in this note that 
the method gives also good results for porous conduits and 
analytical solutions can be obtained, provided that the 
transverse velocity is taken into account and suitably 
approximated. 

LINEARIZED EQUATIONS 

Consider the laminar flow of an incompressible fluid 
between two parallel semi-infinite porous plates and through 
a semi-infinite circular tube of porous wall. As usual, all 
thermo-physical properties of the fluid are assumed constant, 
and the rate of injection or suction and the wall tempera- 
tures are assumed constant and uniform. The inlet velocity 
and temperature profiles are prescribed: uniformly dis- 
tributed over the cross-section or fully~evelo~ in conduits 

Superscripts 

b, bulk; 
i, inbt of conduit ; 
W, wall of conduit. 
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of permeable or impermeable walls, or any other symmetric 
profile. 

The conservation equations of mass, momentum and 
energy are as follows : 

(2) 

aT aT 1 Id dT 
Ud?c+“T=--“) ymi- 

i > Peq 6y cy 
(3) 

where m = 0,l for the two-dimensional and the axially 
symmetric flow, respectively; u and v are the velocity com- 
ponents in x and y directions; p is the pressure; T the 
temperature excess over the wall temperature; Re and Pe 
are Reynolds and Peclet numbers defined on the basis of 
inlet mean-velocity and one half of the spacing for parallel 
plates or the radius of circular tubes. All quantities in 
equations (l)-(3) have been normalized; velocity by the 
inlet mean-velocity; pressure by the inlet dynamic-pressure; 
temperature by the difference between the inlet mean and 
wall temperatures; and x and y by ye is the inside radius 
of the tube or the distance between the mid-plane (y = 0) 
and the channel wall. Equations (l)-(3) are of the boundary 
layer type ofwhich the domain of validity has been discussed 
elsewhere such as [ 1,2]. 

The appropriate boundary conditions on u(x,y) and 
T(x, y) are : 

3 
u(x, 1) = 0, u(x, 1) = -a,, 5 u(x, 0) = 0, 

u(0, Y) = Ui(!.) 
(4) 

ci 
7-k 1) = 0, s TM 0) = 0, T(O, y) = 7;(y) (5) 

where u, is the velocity at the wall, positive for injection 
and negative for suction, and Ui(y) and T;(y) are the inlet 
velocity and temperature all having been normalized by 
appropriate quantities as indicated earlier. 

We now propose the linear approximation of the con- 
vective terms in equations (2) and (3) as follows: 

(6) 

(7) 

where E,(x) and E*(x) are the residues; U(x) is the local 
mean velocity; and V(y) is assumed to be a linear function 
of the transverse coordinate satisfying the conditions 
V(0) = 0 and V(1) = -t’,: 

V(y) = -t&y. 

Introducing a new coordinate 

(8) 

I 
1 

5=z (9) 

we obtain the linearized equations ofmomentum and energy: 

l?T 
z-ReWyE-i’l 

ay Pry” dy 
(11) 

The boundary conditions on u and T remain in the same 
forms as (4) and (5) with x replaced by C. 

SOLUTION FOR VELOCITY 

We seek the solution for ~(5, y) in the form 

C. Y,(y)e-‘m: 

where C. and d, are arbitrary constants and Y,(y) satisfies 

Y/‘(y) + 
( I:? 

Re,j + - Y’(y) + i., Y,(y) - 2” Yi( 1) = 0 (12) 

y.(l) = E(O) = 0. 

It can be easily shown that Y,(y) are orthogonal to the 
function F,(y) defined by 

F.(y) = y,(y) - f y’( 1) (13) 
n 

with respect to the weight function w = y”exp(Re,y’/2). 
Thus, the solution of(l0) satisfying the boundary conditions 
on u in (4) can be written in the form 

s 

1 

453 Y) = ui(y’)G(t, Y IO, Y’)Y’” dy’ 
0 

1 

I 

+ G(k~lt’, y')Q(5')y'"dy' (14) 
0 

where G(<, y, [‘, y’) is given by 

G(L Y 15’3 Y’) 

= “Z, 

Y(MU)exp(y”Rew/2) 

i 

r 
e-L(<-5’) (15) 

Y,(y’)~.(y’)exp(yf2Re,/2)y’” dy’ 
0 

and 
Q(<‘) = 2m+1Rewe2”Re-<‘, (16) 

If we rewrite (12) in terms of f(y) and introduce a new 
variable z = - Re, y*/2, we can obtain 

(17) 

where 4 is the confluent hypergeometric function and i, are 
the roots of the transcendental equation 

-4 &+l; F; -R$ 
i 

=O. (18) 
W 

Combining (13) and (17) gives 

This completed the solution for u in (14) which gives 

2Re, 

Re,+I,/(m+ 1) 
[eV”ReW+ 1.X _ 11 e- 1°C (20) 

where 

c. = 



Shorter Communications 441 

for uniform inlet velocity, and 

eRe~r2/2(1 -y’)y’“dy 

m+3 Re, 
T;-~y2 eRt.~y’/2~+2dy 

(22) 

for parabolic inlet velocity. 

SOLUTION FOR TE~PERA~RE 

Again we seek the solution for Tin the form of 

where D, and /?. are arbitrary constants, Pr is the Prandtl 
number, and 0, satisfies 

e”(l) = 0 (24) 

e;(o) = 0. (25) 

As before, intr~u~ing a new independent variable z = 
- Pe,y2/2, we obtain the solution for B(y): 

where j” is the root of the transcendental equation 

+!& !!!g; -!+ (27) 
w 

It can be easily shown that functions B.(y) are mutually 
orthogonal with respect to the weight function w(y) = 
y” exp(Pe,y2/2). Thus; the solution for the temperature is 

T(& Y) = 
s 

L 
UY’)S(& Y IO, y’)Y dy’ (28) 

0 

where g(& y IO, y’) is given by 

8(t, y, o, y,) = f 

s . e-‘~n~P”. (29) 
n=, 

@.Z(y) eppwy21z y” dy 
0 

For the case of uniform inlet temperature, (28) becomes 

-+,’ > emBnCiPr (30) 

where 

D, = 

* (31) 

FRICTION AND HEAT-TRANSFER COEFFIClENTS 

We normalize the shear stress by the local dynamic 
pressure to obtain the friction coefficient (C,) and the 
pressure drop 

C,Re(<)= -2 $ 2 
[ 01 g=1 

=q g ~~&$+L+‘; !!g; _qje-“.’ 
I 1 w 

x 1+ I 2Re, 
Re,+ &/(m + 1) 

[ew”Re~+l&_ I] 

> 
(32) 

p(0) -p(x) = 2” + l u2dy 

-A,+ i C,ri, 
(Jz _ (p - A./zmRew) 

n=, (3m-b l)Re, +(m+ I)& 

11 (33) 

where C,, is given by (21) and (22) and A, = (2-m)/2, 
(18-8m)jl5 for uniform and parabolic inlet velocities 
respectively. We define the local Nusselt number on the 
basis of 2y,, 

2 dT 

i > 

21-m m 
Nu(r)=-- - z-Y C 

Tb dy )‘=* B It , 

where D. is given by (31), and Tb is the normalized bulk 
temperature. 

CALCULATED RESULTS 

Calculated results of velocity and temperature distribu- 
tions, friction and heat-transfer coefficients and pressure 
drops are found in good agreement with those obtained from 
numerical solution of the conservative equations for flow in 
two parallel plates [3] and in a tube [4]. However, only 
some of the velocity and temperature distributions are 
reported here as shown in Figs. 1 and 2 where c has been 
converted to x* = x/Re. For x+ larger than a certain value, 
the velocity ana temperature profiles and Nusselt number 
remain essentially unchanged. On the basis of 1 per cent 
deviation, the fully developed Nusselt numbers are shown 
in Table 1. 

Table 1. Fully developed Nusselt numbers for parallel 
plates (I) and circular tubes (II) with Pr = 0.72 and 

uniform inlet velocity 

Present Doughty Terrih- Present Kinney 
Re, (I) (I) Walker (I) (II) (II) 

-5 16.51 1693 17.12 
-1 9.50 9.09 9.09 4.78 4-4.5 

1 668 6.16 6.17 3.63 3.20 
5 3,2& 2.40 2.52 1.96 1.30 

10 1.13 0.54 2.06 0.77 0.30 

Results reported in [3,5,6] are also reproduced in Table 1 
for comparison. 
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FIG. 1. Axial velocity variation (Re,, y) with uniform inlet 
velocity. 
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FIG. 2. Temperature dist~bution (Re,, .x+) with uniform 
inlet velocity, Pt = 0.72. 

The numerical calculation of confluent hypergeometric 
functions is simple and can be tabulated once and for all 
and the series solutions for the velocity and temperature 
converge quite rapidly. The method is particularly con- 

1 
’ 

venient for different initial velocities and temperatures and 
for fluids of different Prandtl numbers. For Prandtl number 

2 
’ 

other than 0.72, the temperature profile is the same for the 
same wall Peciet number provided that x+(0.72) is replaced 

3 

by x’(Pr) defined by 

x+(Pr)= ~{[liRe,s+(0~72)]P’.‘o’7*-l}. 
w 

It can be concluded that the linearized method which has 4 
been employed with remarkable success for flow in ducts 
of impermeable walls is also useful for conduits of porous 
walls, heated or unheated, provided that the transverse con- 5. 
vective terms in the momentum and energy equations are 
taken into account. Evidently, the method can be applied to 
problems in other physical contexts such as those cited 6. 
in [l]. It should also be ‘remarked that more accuracy can 
be obtained if we make another correction on U(x) as was 
done in [7], either through the momentum or energy 7. 
equation. However, the improvement is gained at the expense 
of the simplicity of the method. 
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NOMENCLATURE 

heat-transfer coefficient; 
velocity of water jet; 
the total cross-section of water jet at the mean 
water velocity; 
the total surface of water jet; 
the total cross-section of water jet at the out- 
pouring: 

tm saturation temperature; 
twin, temperature of the entering water; 
t W.“I, temperature of the outgoing water; 
P9 density of water; 
f, heat capacity of water; 

ii 
heat of evaporation ; 

Wf?, 
=rJc(t,-twin); 
Weber number. 


